

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:
Where precast inlets are used as an alternate to cast-in-place inlets, a 4 compacted leveling bed of sand or $1 / 4 "-0$ crushed aggregate shall be provided. All precast inlets shall conform to requirements of ASTM C91 3.
. Graphics show CG-1 inlet with Type 2 grate. See Table A for inlet dimensions.
Type 1 grate allowed only in locations not subject to bicycle or pedestrian us For frame and grate details, see Std. Dwg. RD365.
3. Provide sump only where shown on plans, and allowed by jurisdiction. See Detail B for inlet
4. For curb details, see Std. Dwgs. RD700 \& RD701
5. See Std. Dwg. RD336 for tracer wire details, or approved alternate
6. Max. pipe diameter varies with pipe material.
7. Location, elevation, diameter, slope, and number of pipe(s) varies, see project plan 8. All concrete shall be commercial grade concrete
9. $3 / 4$ " preformed filler (in concrete pavement or gutter only) to extend through thickness of concrete (Pay limit for inlet is expanded when curb and gutter are monolithic) 1. See Std. Dwg. RD339 for pipe to structure connections.
DETAIL B WITH-OUT SUMP

DETAIL B WITH-OUT SUMP

SECTION B-B

BAR "a" DETAILS

\section*{| TABLE A | | | |
| :---: | :---: | :---: | :---: |
| T TYPE | W | W_{1} | |
| $\mathrm{CG}-1$ | $2 \cdot 87 / \mathrm{I}^{2}$ | | |

}

NOTES:

1. \#3 "a" bars to be placed during curb construction.
2. All bars to be placed $1 / 1 /$ " clear of nearest face otherwise. 3. All bars shall be full length.

Effective Date: December 1, 2023 - May 31, 2024

General notes for all detalls on this sheet:

1. See Std. Dwgs. RD720 and RD721 for concrete sidewalk details. See project plans for sidewalk width, placement and design specified
2. Provide expansion joints around poles, boxes, at ends of each driveway and other fixtures which protrude through or against the structures. For sidewalk, monolithic curb and sidewalk, provide construction expansion joints at 45 feet maximum spacing.
3. On sidewalks 8 feet and wider, provide a longitudinal joint at the midpoint of sidewalk panel.
4. See Std. Dwgs. RD700 and RD701 for concrete curb details. See project plans for the curb design specified.
5. Do not place expansion joints between separate concrete pours for curb ramp system components construction. Place expansion joints outside of curb ramp runs when required. Install expansion joints flush with surface for structures protruding through the curb ramp system. See Std. Dwg. RD900.
6. Construct contraction joints at 15 feet maximum spacing, and at each curb ramp, driveway, sidewalk and curb.

LEGEND:New sidewalk or ramp run
$\diamond \quad$ Slope 1.5% max (Max. 2.0\% finished surface slope) (Normal sidewalk cross slope)
$\leftarrow \quad$ Slope 7.5% max
-
Zero exposure
(E) EXPANSION JOINT (See general notes $2 \& 5$)

* Project the existing sidewalk profile grade through transition panel to new sidewalk through transition

SIDEWALK AND CURB RAMP TRANSITION PANELS

CURB RAMP INDEX

	CURB RAMP INDEX
STD. DWG. NO.	STD. DWG. TITLE
RD900	Curb Ramp Components And Legend
RD901	Curb Ramp Legend And Corner Identification
RD902	Detectable Warning Surface Details
RD904	Detectable Warning Surface Placement For Curb Ramps
RD905	Detectabbe Warning Surface Placement For Directional Curbs
RD906	Detectable Warning Surface Placement For Accessible Route Island
RD908	Detectable Warning surface Placement
RD909	Detectable Guide Strip Placement At Bike Ramps
RD910, RD912	Perpendicular Curb Ramp
RD913	Perpendicular Curb Ramp With Closure
RD916	Perpendicular Curb Ramp Single Ramp
RD920	Parallel Curb Ramp
RD922	Parallel Curb Ramp Single Ramp
RD930, RD932 \& RD936	Combination Curb Ramp
RD938	Combination Curb Ramp Single Ramp
RD940	Blended Transition Curb Ramp Single Ramp
RD950 \& RD952	End Of Walk Curb Ramp
RD960	Unique Curb Ramp

LEGEND:
Marmor Marked or intended crossing locationSidewalk or other traversable surface

Level area (Turning space /landing)
$\leftrightarrow \quad$ Cross slope 1.5% max.
(Max. 2.0\% finished surface slope)
(Normal sidewalk cross slope)
Running slope 4.0% max.
(Max 4.9% finished surface slope)
$\leftarrow \quad \begin{array}{r}\text { Running slope } 7.5 \% \text { max. } \\ \text { (Max. } 8.3 \% \text { finished surface slope) }\end{array}$
Counter slope 4.0% max. ascending or descending (Max. 5.0% finished surface slope
Slope as required for drainage

- Flare slope
$\left\urcorner 4^{\prime} \times 4^{\prime}\right.$ clear space

TYPICAL CURB RAMP SYSTEM COMPONENTS (PERPENDICULAR TYPE SHOWN)

Effective Date: December 1, 2023 - May 31, 2024
3. The detectable warning surface shall extend the full width of the curb ramp opening, shared use path, blended transition, turning space, or other roadway entrance as applicable. A gap
up to 2 inches on each side of the detectable warning surface is permitted (measured at the leading edge of the detectable warning surface panel as shown in Detail " A ").
4. Detectable warning surface shall be placed at the back of curb for a minimum depth of 2 ft . he direction of pedestrian travel at curb ramps that are adjacent to traffic. Detectable war surface may be radial or rectangular, but must comply with the truncated dome size and spacing standards. Detectable warning surface may be cut to meet necessary shape as shown
in plans. Detectable warning surface across a grade break is prohibited. Place abutting panels within $1 / 4$ inch of each other and install anchors, as specified by manufacturers, along cut edse.
5. Color to be safety yellow if no color specified in construction note. Alternative colors require a design exception on or along state highways.
6. Detectable warning surface shall be used in the following locations
a) Curb ramps at street crossings.
b) Crossing islands (Accessible Route Islands)
b) Crossing islands
c) Rail crossings.
7. Where public transportation stations (rail, bus, etc.) use platform boarding, detectable arning surface shall be placed along the full edge length of the station, when not protected by platform screens or guards, (see Std. Dwg RD908)
8. Detectable warning surface shall not be used on the following locations.
e Std. Dwgs. RD950, RD952 and RD960).
c) Parking lots, acesss aisles and passenger loading zones where curb ramp does not lead c) Parking ots, acce
9. Where no curb is present, the detectable warning surface shall be placed at the edge of the roadway
10. On or along state highways, curb and gutter is required at curb ramps.

DETAIL "A"

TRUNCATED DOME SPACING TRUNCATED DOME

DETECTABLE WARNING SURFACE DETAIL

TRUNCATED DOME DETAILS

LeGEND:
曲: D.:.\# Detectable warning surface
Cross slope 1.5% max. (Normal sidewalk cross slope)

- Running slope 7.5% max.

Max. 8.3% finished surface slope)

Effective Date: December 1, 2023 - May 31, 2024

1．Detectable warning surface details \＆locations are based on applicable ODOT Standards．
2．See project plans for details not shown．
See Std．Dwgs．RD700 \＆RD701 for curbs．
See Std．Dwg．RD902 for detectable warning surface installation details．
3．On or along state highways，curb and gutter is required at curb ramps．
4．Detectable warning surface placement for perpendicular ramps vary as shown

LEGEND：
Marked or intended crossing location
Sidewalk
弲曲曲
$\leftrightarrow \quad$ Cross slope 1.5% max．
（Max．2．0\％finished surface slope）
（Normal sidewalk cross slope）
$\leftarrow \quad$ Running slope 7.5% max
Max 8.3% finished surface slope）

PERPENDICULAR CURB RAMP GRADE BREAK IN FRONT OF CURB

SHARED－USE PATH CONNECTION

The selection and use of this Standard Drawing，while designed in accordance with generally accepted engineering principles and practices，is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer．	All materials shall be in accordance with the current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS DETECTABLE WARNING SURFACE PLACEMENT FOR CURB RAMPS 2024			
	${ }_{\text {BCOLC．}}^{\text {CAO }}$	N／A	SDATE－20－JUL－2020	RD904

Effective Date：December 1， 2023 －May 31， 2024

General notes for all detalls on this sheet

1. Curb ramp details are based on applicable ODOT Standards.
2. See Std. Dwgs. RD700 \& RD701 for curbs.
See Std. Dwgs. RD720 \& RD721 for sidewalks.

See Std. Dwgs. RD902 through RD908 for detectable warning surface installation details.
See tid. Dug. N240 for riosswak closure deta.
3. Site conditions normally require a project specific design. See project plans for details not
4. Tooled dummy joints are required at all curb ramp grade break lines, (see Std. Dwg. RD722).
5. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
6. Place detectable warning surface at the back of curb for a minimum depth of 2^{\prime} in the direction of pedestrian travel full width of curb ramp opening that is adjacent to traffic.
7. Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction
of the eramp runc. Grade breaks shall not be permitted on the surface of ramp runs and turning of the ramp run. Grade breaks shal not be permitted on the surf
spaces. Surface slopes that meet at grade breaks shall be flush.
8. When 2 ramp runs are immediately adjacent, the curb exposure (E) between the adjacent side
may range between 3 and full design exposure.
9. Curb ramps for shared use paths intersecting a roadway shall be full width of path, excluding flares. When a curb ramp is used to provide bicycle access from a roadway to a sidewalk, the
0. Place an inlet at upstream side of curb ramp or perform other approved design mitigation Check the gutter flow depth at curb ramp locations to assure that the design flood does no overtop the back of sidewalk
11. On or along state highways, curb and gutter is required at curb ramps. LEGEND:

```
\square%%Sidewalk
```

\square%%Sidewalk
Detectable warning surface
Detectable warning surface
Level area (Turning space/landing)
Level area (Turning space/landing)
With obstruction 4.5' x 5.5'(Longer dimension in direction of pedestrian
With obstruction 4.5' x 5.5'(Longer dimension in direction of pedestrian
treet crossing).
treet crossing).
For the purposes of this application, a max. 2.0% finished surface slope (for
For the purposes of this application, a max. 2.0% finished surface slope (for
Cross slope 1.5% max.
Cross slope 1.5% max.
(Max. 2.0% finished surface slope)
(Max. 2.0% finished surface slope)
(Normal sidewalk cross slope)
(Normal sidewalk cross slope)
\&\quad}\quad\begin{array}{c}{\mathrm{ Running slope 7.5% max. }}
{\mathrm{ (Max. 8.3% finished surface slope)}}
\&\quad}\quad\begin{array}{c}{\mathrm{ Running slope 7.5% max. }}
{\mathrm{ (Max. 8.3% finished surface slope)}}
@ Counter slope 4.0% max. ascending or descending,
@ Counter slope 4.0% max. ascending or descending,
Max. 5.0% finished surface slop
Max. 5.0% finished surface slop
Slope as required for drainage
Slope as required for drainage
- 4 4'\times4' clear space

```
    - 4 4'\times4' clear space
```


Effective Date: December 1, 2023 - May 31, 2024

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. Curb ramp details are based on applicable ODOT Standards.
2. See project plans for details not shown
3. See project plans for details not shown.

See Std. Dwgs. RD700 \& RD701 for curbs.
See Std. Dwgs. RD902 through RD908 for detectable warning surface installation details.
3. Site conditions normally require a project specific design. See project plans for details no shown.
4. Tooled dummy joints are required at all curb ramp slope break lines, (see Std. Dwg. RD722),
5. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
of pedestrian travel full width of curb ramp opening that is adjacent to traffic
7. Place an inlet at upstream side of curb ramp or perform other approved design mitigation.

Check the gutter flow depth at curb ramp locations to assure that the design flood does not overtop the back of sidewalk.
8. Return curb may be provided in lieu of flared slope only if protected from traverse travel by landscaping, see Std. Dwg. RD721. Return curb shall not reduce width of approaching sidewak
9. Curb ramps for shared use paths intersecting a roadway shall be full width of path, excluding flares. When a curb ramp is used to provide bicycle access from a roadway to a sidewalk, the curb ramp opening will be $\geq 8^{\prime}$ wide, (see Std. Dwg. RD909 for additional details).
10. On or along state highways, curb and gutter is required at curb ramps.
cular to the direction of the ramp run. Grade breaks shall not be permitted on the sur

$$
\begin{aligned}
& \text { of the ramp run. Crade breaks shall not be perritted on the su } \\
& \text { spaces. Surface slopes that meet at grade breaks shall be flush }
\end{aligned}
$$

> LEGEND:

Marked or intended crossing location
Sidewalk
Detectable warning surface
Level area (Turning space /landing)
With obstructist $4.5^{\prime} \times 4.5^{\prime}$ ' ' .
With obstruction $4.5^{\prime} \times 5.5^{\prime}$ (Longer dimension in direction of pedestrian
street crossing). For the purposes of this application, a max. 2.0% finished surface slope (for
drainage) measured perpendicular in two directions is considered level.
$\lessgtr \quad$ Cross slope 1.5% max.
(Max. 2.0\% fininhed surface slope)
$\leftarrow \quad$ Running slope 7.5% max
(Max. 8.3% finished surface slope)
$\hookleftarrow \quad$ Counter slope 4.0% max. ascending or descending, Slope as required for drainage
$\Delta \quad$ Flare slope
(Max. 10\% finished surface slope)

Effective Date: December 1, 2023 - May 31, 2024

ISOMETRIC VIEW

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. Curb ramp details are based on applicable ODOT applicable Standard
2. See project plans for details not shown.

See Std. Dwgs. RD700 \& RD701 for curbs.
See Std. Dwgs. RD720 \& DD72 for siden
See Std. Dwgs. RD720 \& RD721 for sidewalks.
See Std. Dwg. RD722 for transition panel details.
See Std. Dwgs. RD902 through RD908 for detectable warning surface installation details. See Std. Dwg. RD920 for parallel curb ramp details.
3. Site conditions normally require a project special design. See project plans for details not shown.
4. Tooled dummy joints are required at all curb ramp grade break lines, (see Std. Dwg. RD722).
5. Curb ramp slopes shown are relative to the true level horizon (zero bubble)
6. Place detectable warning surface at the back of curb for a minimum depth of 2 ' in the direction of pedestrian travel full width of curb ramp opening that is adjacent to traffic.
7. Place an inlet at upstream side of curb ramp or perform other approved design mitigation. Check the gutter flow depth at curb ramp locations to assure that the design flood does not
overtop the back of sidewalk.
8. When a shared use path terminates, the curb ramp shall be the full width of the path, the turni
space Y-dimension should be minimum 8 ' wide to enable bicycles to ride from ramp to should
9. Crade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction
of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning of the ramp run. . Grade breaks shall not be permitted on the surf
spaces. Surface slopes that meet at grade breaks shall be flush.
10. On or along state highways, curb and gutter is required at curb ramps.
11. Unique curb ramp option can be used for curved or tangent roadway sections. Superelevate roadways require a site specific detai
LEGEND:

\square Sidewalk
 Transition panel

Detectable warning surfac
Level area (Turning space/landing)
Unobstructed $4.5^{\prime} \times 4.5^{\prime}$
With obstruction $4.5^{\prime} \times 5.5^{\prime}$ (Longer dimension in direction of pedestrian With obstruction $4.5^{\prime} \times 5.5^{\prime}$ (Longer dimension in direction of pedestrian
street crossing). street crossing).
For the purposes this application, a max. 2.0\% finished surface slope
drainage) measured perpendicular in two directions is considered level.
Cross slope 1.5% max. (Max. 2.0\% finished surface slope)
(Normal sidewalk cross slope)
$\leftarrow \quad \begin{array}{r}\text { Running slope } 7.5 \% \text { max. } \\ \text { (Max. } 8.3 \% \text { finished surface slope) }\end{array}$
$\Leftarrow \quad$ Counter slope 4.0% max. ascending or descending, (Max. 5.0\% finished surface slope)
Slope as required for drainage
w New construction sidewalk width. See contract plans for dimension

Effective Date: December 1, 2023 - May 31, 2024

GEOTEXTILE/WIRE MESH/AGGREGATE - TYPE 2
NOT TO SCALE

PREFABRICATED FILTER INSERT - TYPE 3 Not to Scale

NOTE:
Wstall sod around the perimeter
of inlets within 36 hours of
harvest of the sod

SOD PROTECTION - TYPE 6

AREA DRAIN PLAN

Place a sandbag at ea
end of wattle and
end of wattle and
3'OC to hold in platal
CURB INLET PERSPECTIVE VIEW
COMPOST FILTER SOCK OR WATTLE - TYPE 7

NOTES:
Type 2-Geotextile/wire mesh/aggregate Place the wire mesh over the grate.
Place sediment fence geotextile Place sediment fence geotextile over the structure.
structure.
Install aggregate over the geotextile fabric. Type 3 - Prefabricated filter inserts Install prefabricated filter inserts according to the plans, special provisions, and
manufacturer recommendations. manufacturer recommenations.
Prefabricated inserts with provisions for overflow are allowed only when accompanied by additional $B M P$'s to
prevent the potential of sediments entering project storm systems. field fabricated inserts are not allowed. Type 7-Compost filter sock Drive $2^{\prime \prime} \times 2$ " wood stakes a minimum of
$6^{\prime \prime}$ into ground and flush with the top $6^{\text {" }}$ into ground and flush with the top
Overlap ends of sock per manufacturers
recommendations (12"min. $36^{\prime \prime}$ max recommendations (12"min., 36" max.).
Use $8^{\prime \prime}$ to $12^{\prime \prime}$ dia sock on curbside in traffic
areas.

CURB INLET SEDIMENT DAM - TYPE 10

Type 7 cont.)
Use $12^{\prime \prime}$ to $18^{\prime \prime}$ dia sock in non-traffic areas or areas where the larger socks can be
used safely. used safely.
use synthetic
use synthetic mesh socks for temporary
installations.
Type 10 - Curb inlet sediment dam fit curb inlet sediment dam snugly into inlet mouth. Curb inlet sediment dam is required for use with inlet filter insert
where at-grade inlet grate and curb inlet. where at-grade inlet grate and
are combined at a catch basin.
Type 11 - Wattle barrier with filter insert Install pratal
detail:
Install wattles over opening and $36^{\prime \prime}$ to each
side of opening tight against curb side of opening tight against curb. Adjust
wattle to force storm water to flow through wattle to force storm water to flow thro
fister insert or wattle prior to leving the
site.
Adjust, replace or modify the inlet protection Adjust, replace or modify the inlet protection
as neeeded to prevent sediment laden water
from entering the catch basin.

Effective Date: December 1, 2023 - May 31, 2024
General Installation Notes:
a. Signing details shown on this sheet are intended to convey "typical" conditions only.
Individual locations may require installation dividual locations may require installation
For guidance regarding unique installations or exceptions call the Project Sign Designe or Region Traffic Section.
b. Locate breakaway supports away from ditches to avoid problems with erosion, corrosion, debris, maintenance and breakaway performance See Dwg. No. TM635 for more information.
c. For wood post support details see Dwg. No. TM670.
d. For perforated steelsquare tube support details see Dwg. No. TM681.
. For triangular base breakaway support details see Dwg. No. TM602.
f. For multi-post breakaway support details see Dwg No. TM600.
g. Mounting heights should not be more than 3 inches more
h. $2^{2 "}$ vertical spacing between all signs.

Notes:

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance with			
	OREGON STANDARD DRAWINGS			
	SIGN INSTALLATION DETAILS			
	DATE		ON DESCRIPTION	
	$01 / 22$	Edited elevato nexti Montring teight deatils		
	BALC.	o. . . N/A	${ }_{\text {SATE- }}^{\text {SDR }}$ O JAN 2022	TM200

Effective Date: December 1, 2023 - May 31, 2024

[^0]

Effective Date: December 1, 2023 - May 31, 2024

MEDIAN WIDTH TRANSITION

(TWO NARROW DOUBLE YELLOW LINES TO ONE-DIRECTION NO-PASSING LINE)
(Refer to TM539 for additional details)

MEDIAN BULLNOSE DETAIL
ne RPM spaced
E DETAIL

LEGEND
■ Mono-Directional White (marker reflects white to left in this symbol)
\amalg Bi-Directional Yellow (marker reflects yellow both the left and right in this symbol) Increasing stationing from Increasing
left to right
\longleftarrow Direction of Travel
t - Lane line dimensions are shown on the striping plans.

LANE USE ARROW PLACEMENT FOR TURN LANE DETAIL "A"

two-way Left turn lane arrow placement DETAIL "B"

```
General Notes:
1) Center pavement marking legends within the lane.
2) Placement of lane use arrows with respect to the
    . wide white line (W-2) channelization shown in
    Detail "A" applies to both left and right turn lanes.
```

3) Center "ONLY" markings between lane use arrows.
15^{\prime} when installing elongated arrows.
** When L is greater than 400 , install 3 rd lane use arrow at $1 / 2 \mathrm{~L}$ as shown in Detail " A ".
*** Double arrows to be placed at even intervals,
proportioned within block or as shown.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS TURN ARROW MARKING DETAILS 2024			
	DATE			
	Book ${ }^{\text {calc }}$.	SATE_ 07-01-2020	TM531

Effective Date: December 1, 2023 - May 31, 2024

MEDIAN BULLNOSE DETAIL

MEDIAN WIDTH TRANSITION
(TWO NARROW DOUBLE YELLOW LINES TO ONE-DIRECTION NO-PASSING LINE)

LEGEND

${ }^{4}$ - Lane line dimensions are shown on the striping plans

To be accompanied by Standard Dwg. Nos. TM500 thru TM504

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance with he current Oregon Standard Specifications.			
	OREGON STANDARD DRAWINGS			
	MEDIAN AND LEFT TURN CHANNELIZATION DETAILS			
	2024			
	07 -2020 Extended accompanied by drawingss toinclude T W504			
	BOOKLC.	N/A	${ }^{\text {SDR }}$ DATE. $07.01-2020$	TM539

Effective Date: December 1, 2023 - May 31, 2024

General note:

1.) Use control points to make continous narrow guideline as specified

* Control points are placed along the lane line for all longitudinal lines except the following (ND)	For center
lines only	\(\begin{aligned} \& A control point layout 4" offset from the lane line is required

\& for a ND line when used as a center line.\end{aligned}\)

To be accompanied by Standard Dwg. Nos. TM500 thru TM504

Effective Date: December 1, 2023 - May 31, 2024
CENTERLINE ALIGNMENT LAYOUT
*When ND is used as centerline markings,
a control point layout 4" offsee from the lane line is required.

Effective Date: December 1, 2023 - May 31, 2024

Signs mounted to vertical posts that use stainless steel Slamps shall not be wider than $36^{\prime \prime}$ Use Use 2 clamps for
clamps
all signs $48^{\prime \prime}$ to $60^{\prime \prime}$ in height.

STAINLESS STEEL CLAMP (SSC) DETAIL

ROAD NAME SIGN STRUCTURE MOUNT DETAIL

GENERAL NOTES

For Secondary Sign Mounts See TM678.

Effective Date: December 1, 2023 - May 31, 2024

TAPER TYPES \& FORMULAS	
TAPER	FORMULA
Merging (Lane Closure)	"L"
Shifting	"L"/2 or $1 / 2 \mathrm{~L}$ L"
Shoulder Closure	"L" $/ 3$ or $1 / 3 \mathrm{L"}$
Flagging (See Drg. TM850)	$50 \mathrm{l}-100^{\prime}$
Downstream (Termination)	Varies (See Drawings)

$\star \begin{aligned} & \text { Use Pre-Construction Posted Speed to select } \\ & \text { the Speed from the Tables below: }\end{aligned}$

TEMPORARY BARRIER FLARE RATE TABLE	
\star SPEED (mph)	MINIMUM FLARE RATE
≤ 30	$8: 1$
35	$9: 1$
40	10.1
45	$12: 1$
50	$14: 1$
55	$16: 1$
60	189.1
65	$9: 1$
70	$20: 1$

TRAFFIC CONTROL DEVICES (TCD) SPACING TABLE				
\star SPEED (mph)	Sign Spacing (ft)			Max. Channelizing Device Spacing (ft)
$20-30$	100	100	100	20
$35-40$	350	350	350	20
$45-55$	500	500	500	40
$60-70$	700	700	700	40
Freeway	1000	1500	2640	40

NOTES:

- Place traffic control devices on 10 ft . spacing for intersection and access radi When necessary, sign spacing may be adjusted to fit site conditions.
Limit spacing adjustments to 30% of the $" A$ " dimension for all speeds.
notes
- When paved shoulders adjacent to excavations are less tha
four feet wide protect longitudinal abrupt edge as shown.
- Use aggregate wedge when abrupt edge is 2 inches or greate

Extg. pavement

NOTES:

- Install PCMS beyond the outside shoulder, when possible.
- Use the appropriate type of barricade panels for PCMS location Right shoulder, use Type B BIII)R
Left shoulder, use Type (III)L
- Use six drums in shoulder taper on 20 ' spacing. The drums and
barricade may be omitted when PCMS is placed behind a roadside barrier
- Detail as shown is used for trailered and non-crashworthy components of - Smart Work Zone Systems

PORTABLE CHANGEABLE MESSAGE
SIGN (PCMS) INSTALLATION

NOTES:

- Install Flagger Station Lighting beyond the
- Use six tubular markers in shoulder taper

Place cart / generator / power supply off of the
shoulder, as far as practical.

FLAGGER STATION LIGHTING DELINEATION

NOTES

- Abrupt edges may be created by paving, operations, excavations or other roadway work. Use abrup
abrupt edges of 1 inch or greater.
- If the excavation is located on left side of traffic, replace the

- Continue signing and other traffic control devices
- If roll-up signs are used, attach the correct (CW21-9) plaques to the sign face using hook and loop
Place roll-up signs in advance of barricades.

TYPICAL ABRUPT EDGE DELINEATION

General notes for all tcp drawings:

- Signs and other Traffic Control Devices (TCD)
- Place a barricade approx. 20 ahead of al
- Arrows shown in roadway are directional arrows
to indicate traffic movements.

Arrows shown in roadway are
to indicate traffic movements.

- All signs are 48 " $\times 48$ " unless otherwise shown. Use fluorescent orange sheeting for the
background of all temporary warning signs.
- 。 Temp. Plastic Drums See TCD Spacing
for max. spacing.
- - $28^{\prime \prime}$ Tubular Markers See TCD Spacing Table
for max. spacing.

DIIIID UNDER CONSTRUCTION

- All diamond shaped warning signs mounted on barrier sign supports shall be 36 " by $366^{\prime \prime}$.
- Low speed highways have a pre-construction posted speed of 40 mph or less.
High speed highways have a pre-construction posted speed of 45 mph or higher
- Do not locate sign supports in locations designated for bicycle or pedestrian traffic.

Combine drawing details to complete temporary traffic control for each work activity.

- Coordinate and control pedestrian movements through a Temporary Accessible Route using
- To be Troafic Cod by Dos,
- To be accompanied by Dwg. Nos. TM820 \& TM82

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS			
	TABLES, ABRUPT EDGE AND PCMS DETAILS			
	2024			
	DATE	Added a note for Peass		
	${ }^{07-2022}$			
	Book	N/A	SDRR 01-JUL-2022	TM800

DIAGRAM FOR BARRICADE PLACEMENT AND SLOPE MARKING

General notes for all detalls

- Sandbags (approximately 25 lb sack filled with sand)
- Ballast shall not extend above bottom rail or be suspended
- For rails less than $36^{\prime \prime}$ long, 4^{4} wide stripes shall be used.
- Rails must be $8^{\prime \prime}$ min. to $12^{\prime \prime}$ max. in height.
- Use barricades from ODOT Qualified Products List (QPL).
- Use 4' Type III barricades where horizontal
- Do not block bike lanes or shoulders unless the
- faciny is properiy closed and signed

Do not place barricades in sidewalks unless sidewalk is
closed and a temporary pedestrian accessible route (TPAR) closed and a temporary pedestrian accessible route (
is signed according to the TCP. See Dwg. No. TM844.

- Markings for barricade rails shall slope downward
at an angle of 45 in the direction traffic is to pass.
- Where a barricade extends entirely across a roadway, it is desirable that the stripes slope downward in the
direction toward which traffic must turn in detouring.
- Where both right and left turns are provided for, dione the chevron from the center of the barricade.
- For full roadway closures, the C or LR barricad may be used. Extend barricades completely
across roadway unless access is required for across roadway u
local road users.

BARRICADE NOTATION

CLOSED - C
(For approaching traffic)

(For approaching traffic)

The selection and use of this Standard Drawing, while generally accepted engineering principles and practices, is the ole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

Effective Date: December 1, 2023 - May 31, 2024

NOTES:

- Do not block bicycle lanes, sidewalks, or TPAR's with sign supports. Maintain minimum widths for these facilities
- To be accompanied by Dwg. Nos. TM670, TM671, TM687, TM688 \& TM689.

- Drill additional holes so sign can be rotated 90 degrees

All structural steel shall conform to ASTM A36.
Support fits both 32 " and 42 " tall "F" barrier.
Use for supporting a maximum 12 sq . ft. of total sign area

- Place support at connection between two concrete barrier sections.

Weld steel according to American Welding Society (AWS) D.1.1.
Do not use clipped signs.

- Follow manufacturer recommendation when installing signs on barrier

Divided Highway/Freeway Medians No Curb/Sidewalk

Where temporary signs are located adjacent to or intrude into a paved bicycle traffic, install secondary sign (plaque) so bottom of sign is a surface, as shown.

Rural or Urban Areas - Curb or No Curb Bicycles On Shoulder

Effective Date: December 1, 2023 - May 31, 2024

4-Lane, 2-Way
RIGHT LANE CLOSURE, NEAR SIDE

General notes for all detall

- Additional Traffic Control Measures (TCM) may be required for all legs of the intersection
- The "SIGNAL AHEAD" (W3-3a) sign may be substituted with the signal ahead symbol (W3-3) sign.
- To determine Taper Length ("L") and Buffer Length ("B"), use the "MINIMUM LENGTHS TABLE" on Dwg. TM800
- For left lane or shoulder work, place TCD to close left lane or shoulder. Use "LEFT LANE CLOSED AHEAD" (W20-5) sign,
- To determine sign spacing A, B, and C, use "TRAFFIC Control devices (TCD) SPACING TABLE" on Dwg. TM800.
- When a through road intersects within the work zone, place a "ROAD WORK AHEAD" (W20-1) sign in advance of the intersection at sign spacing A.
- Tubular markers may be used in lane closure tapers where posted speed is 40 mph or less.
- Where shoulder width is limited, Sequential Arrow may be placed within the lane closure taper.
- Place channelizing devices around intersection radii, business accesses and driveways at 10 ' spacing.
- Install a "BICYCLES ON ROADWAY" (CW1 1-1) sign in advance of the closure when a bike lane is closed, or when the shoulder is closed and bikes
are expected.
- To be accompanied by Dwg. Nos. TM820,
TM82, TM840 \& TM854.
- Automated Flagging Assistance Device (AFAD)
" Tubular Markers See TCD Spacing
ble on TM800 for max. spacing.
$\ldots .0$ Temp Plastic Drums See TCD Spacing
\square UNDER TRAFFIC
EIIIIJ UNDER CONSTRUCTION

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.	All materials shall be in accordance withthe current Oregon Standard Specifications			
	OREGON STANDARD DRAWINGS INTERSECTION WORK ZONE DETAILS 2024			
	2024 DATE REVION DESCRIPTION			
	${ }^{\text {calc }}$ BOK.	N/A	$\left.\right\|_{\text {SDR }} ^{\text {SAE }} 01$-UUL-2022	TM841

Effective Date: December 1, 2023 - May 31, 2024

TEMPORARY CURB RAMP, PARALLEL TO CURB

WITH PROTECTIVE EDGE

WITH SIDE FLARES

GENERAL CONSTRUCTION NOTES:
(1) Clear width shall be greater than or equal to 48 inches. The curb ramp surface shall be firm, stable and slip-resistant. The ramp surface (1) shall have a 8.3% max. finished surface slope.
(2) Detectable edging with a min. 6 inch height shall be placed along the ramp run when there is a vertical drop exceeding 6 inches or is adjacent to a slope exceeding 1:3 (v:h).
(3) Detectable edging with 6 inch min. height and contrasting color shall be placed on all turning spaces where the walkway changes direction
(4) Curb ramps and turning spaces shall have a 2.0% max. finished cross slope.
(5) Clear space of 48 inch $\times 48$ inch or greater shall be provided above and below the curb ramp.
(6) The curb ramp walkway edge shall be marked with a contrasting color, 4 inch wide stripe. The marking is optional where contrasting detectable edging is used.
(7) Provide an approved means to prevent water from accumulating at the bottom of the ramp, or overflowing onto the ramp surface.
(8) Lateral joints or gaps between surfaces shall be less than 0.5 inch wide. Surface slopes that meet at grade break shall be flush. See edge treatment detail.
(9) Changes between surface heights shall not exceed 0.5 inch. Lateral edges should be vertical up to 0.25 inch high, and beveled at 1.2 (v:h)
(10) Install a min. 2 ft wide detectable warning surface at pedestrian street crossings. Omit detectable warning surfaces at end of sidewalk transitions that are not at a crosswalk.
(11) Side flares where provided shall have 10% max. slope.
(12) The curb ramp surface shall be capable of supporting a min. surface load of approximately 800 pounds.
(13) The curb ramp shall be either self-balasting or include an anchoring system capable of keeping the platform stationary under pedestrians
(13) traffic including motorized wheel/chairs.
(14) The curb ramp platform shall be free of sharp or rough edges or abrasive elements that may harm pedestrians.
$\leftarrow \quad$ Max. 8.3% surface slope

EDGE TREATMENT DETAIL

Effective Date: December 1, 2023 - May 31, 2024

[^0]: Effective Date: December 1, 2023 - May 31, 2024

